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1.   INTRODUCTION AND PRELIMINARIES 

The purpose of this article is to increase the accessibility of different dimensions of q-fractional calculus and 

generalization of basic hypergeometric functions to the real world problems of engineering, science and economics. 

Present paper reveals a brief history, definition and applications of basic hypergeometric functions and their 

generalizations in light of different mathematical disciplines of calculus, like quantum calculus. 

Riemann-Liouville q-fractional operator 

Agarwal [8], introduced the q-analogue of the Reimann-Liouville fractional integral operator as follows. 
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f(t) dq(t)     

 Where  α is an arbitrary order of integration such that Re (α)>0. 

Jackson [11], Al.Salam [9] and Agarwal [8] defined basic integration as  
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From above two equations, we get  
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Saigo’s q- Integral Operator 

A basic analogue of Saigo’s  fractional integral operator [29] is defined as   
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2.   MAIN RESULTS 

 In this section, we obtain certain q- integral inequalities, related to the integrable functions, whose bounds are also 

integrable functions, involving q-Saigo’s fractional hypergeometric operators. The results are given in the form of the 

following theorems. 

Theorem1:    Let                                                     and  integrable  functions defined   on [0, )    and 

u: [0, )               such that                       t    [0, ).   
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Proof:    Let                                   and integrable   functions on [0, ) , then           we have  

 ( f( )-f( )) ( g( )-g( )) (h( )+h( ))   

Which implies,  

f( ) g( ) h( )+ f( ) g( ) h( )+ f( ) g( ) h( )+ f( ) g( ) h( )               + f( ) g( ) h(                  

                                                                                                                                                                   ….(1) 

Multiple both sides of equation (1) by                     and taking -integration of the resulting inequality with 

respect to   from 0 to t , we get  
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.                                                                                                                                                                       ........ (2) 

Next, multiplying both sides of (2) by                      taking integration of the resulting inequality with respect to 

   from   to t,  and using definition. This completes the proof of theorem. 
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3.   SPECIAL CASES AND CONCLUDING REMARKS 

In this section, we consider some consequences of the main results derived in the preceding sections. In this section, we 

consider some consequences of the main results derived in the preceding sections. 

Here we derive certain new integral inequalities by setting   = -   and       , we obtain four integral inequalities 

involving -Riemann-Liouville fractional integral operators. 
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